Yacimientos Minerales y Procesos Geológicos
Brian K. Townley

Departamento de Geología
Universidad de Chile


Introducción
Que son los minerales ? Para que sirven ?
De donde vienen - que son los depositos minerales ?
Qué es el negocio Minero ?
Cual es la importancia de la Minería en Chile ?


Que son los minerales ? Para que sirven ?
Mineral : sustancia de origen natural con estructura interna ordenada y composición química dentro de rango definido.
Los minerales pueden ser de uso práctico para la humanidad, ya sea por sus propiedades como mineral, o bien para la extracción de elemento(s) particular(es) como por ejemplo los metales (mineral de mena).
Los recursos minerales se dividen en tres grandes familias, los metálicos, los no-metálicos y los energéticos.
Metálicos: minerales de mena de los cuales se obtienen metales de interes.
No-metalicos: minerales empleados directamente en procesos industriales, tecnológicos, construcción, etc.
Recursos energéticos: petroleo, gas natural, carbón, uranio, etc.

Ejemplo: La composición de un automovil
IRON, MANGANESE, CHROMIUM, TITANIUM, VANADIUM, MOLYBDENUM, COBALT, NICKEL (STEEL FRAME, PLATING)
CARBON, HYDROGEN, NITROGEN, OXYGEN, FLUORINE, CHLORINE (PLASTICS)
COPPER, TIN, ZINC, PHOSPHORUS (WIRING, MOTORS)
LEAD, SULFUR, SILVER, GOLD, PLATINUM, PALLADIUM, RHODIUM, CADMIUM, NEON (ELECTRICAL SYSTEM)
SILICON, BERYLLIUM, BORON, POTASSIUM, SODIUM (GLASS)
ALUMINUM, ZINC (CASTINGS)
RARE EARTHS (La, Ce, Eu) (COMPUTERS, ALARMS)


De donde vienen - que son los depositos minerales ?
Los minerales de interes para su explotación son de ocurrencia natural, asociados a procesos y ambientes geológicos específicos según tipo.
Un depósito mineral o yacimiento es una zona o cuerpo de concentración de recursos minerales.
Una Mina es un yacimiento en el cual es posible realizar la extracción de un mineral o elemento con un beneficio económico.
Para elementos de interes los minerales que lo contienen se denominan mena, minerales de los cuales es posible extraer un metal con un beneficio económico.
Ley es un valor cuantitativo de un elemento en una roca con mineral de mena (ej. 1.2% Cu => 12 Kg de Cu por ton de roca).

Procesos Geológicos
METEORIZACION
SEDIMENTACION MECANICA
SEDIMENTACION QUIMICA
ROCAS INTRUSIVAS PROFUNDAS
FLUIDOS EXPELIDOS POR MAGMAS PROFUNDOS
VOLCANISMO SUBMARINO
METAMORFISMO


Qué es el negocio Minero ?

El rol del negocio minero en la economía es el de encontrar, delinear y desarrollar depósitos minerales económicos, para luego explotar, procesar y vender los productos que de ellos se obtienen.
El negocio minero, por definición, debe ser economicamente rentable.
Salvo que sea de interes social o estratégico.
Flujo Minero (T).
Flujo de Caja. (T).


Cual es la importancia de la Minería en Chile ?
Representa solamente el 8% del P.I.B. por actividad económica (T),
Pero representa el 49% de las exportaciones, 40% corresponde a cobre (T).
Las exportaciones de cobre representan el 82% de las exportaciones mineras chilenas (T).
Chile posee el 24% de las reservas mundiales de Cu (T).
Codelco maneja el 47% de la producción nacional (T).
La economía Chilena es muy dependiente de la gran minería del cobre.



Ubicación y distribución de yacimientos minerales de Cu - Au chilenos:
Franjas metalogénicas






Los depositos minerales son el producto de procesos geológicos concentradores ya sea endógenos o exógenos a los cuales se asocia fraccionamiento geoquímico.
Entre estos procesos destacan los magmáticos, magmáticos hidrotermales, hidrotermales, volcanogénicos exhalativos, sedimentario exhalativos, metamórficos y sedimentarios.
Para la generación de un deposito mineral se requiere de un origen de los elementos y de una serie de procesos que conduzcan a la concentración de ellos.
Estos procesos pueden ser bastante variados para distintos tipos de depositos, la comprensión de ellos de vital importancia para la determinación de criterios de exploración.


Procesos Generadores de Yacimientos



Procesos Metamórficos
- Zonas de Falla (cizalle) y Bombeo Tectónico
- Metasomatismo (migración de fluidos durante metamorfismo)
Procesos Sedimentarios
- Erosión selectiva, migración química, migración física
- Procesos concentradores mecánicos


Composición de Magmas
Los yacimientos de origen magmático ya sea directo o distal comprenden la mayoría de los depósitos minerales metálicos.
La composición de magmas juega también un rol importante sobre el tipo de mineralización asociada, donde la composición de magmas es función en gran medida del ambiente tectónico en el cual es generado.
Se entiende por magma a un sistema multicomponente de sustancias en estado líquido, sólido y gaseoso.
La fase líquida es la más predominante, constituida principalmente por soluciones aluminosilicicatadas, acompañadas de iones libres como Na, Ca, K, Mg entre otros.
La fase sólida se conforma de olivinos, piroxenos plagioclasas y otros, diseminados en el líquido.
La fase gaseosa está compuesta principalmente por agua y cantidades menores de CO2, HF, HCl, SO2, H2BO3, etc.


Magmas: Clasificación
De acuerdo a contenidos de alcalisy de sílice se clasifican los magmas en tres grandes grupos:
Magmas Toleíticos representan principalmente lavas basálticas en centros de expansión oceánico o dorsales o en arcos insulares jovenes.
En estos ambientes ocurre fraccionamiento entre basaltos, andesitas – basálticas y en menor proporción riolitas. Estos magmas son generalmente bajos en K, con un contenido promedio de sílice del orden de 53%.
Yacimientos asociados a este tipo de magmatismo son los de cromita – platinoides (PGM), Bushveld, Sudáfrica, yacimientos de pirrotina – pentlandita – calcopirita, Sudbury, Ontario, yacimientos de magnetita – ilmenita – (vanaditina), Lago Stanford, EEUU, entre otros.


Magmas Calcoalcalinos ocurren en zonas de subducción, en arcos insulares maduros y en los márgenes continentales, con rocas de composición desde gabro a granito (basalto a riolita).
En el caso de arcos insulares dominan las rocas volcánicas, principalmente de composición andesítica (SiO2 del orden de 59%). Estos magmas son derivados de la fusión parcial de la cuña del manto y en menor medida corteza oceánica, con poca interacción ascedente.
En el caso de arcos continentales las rocas tienden a una composición más silicea, andesitas, dacitas y riolitas y sus equivalentes intrusivos. Son derivados de fusión parcial de la cuña del manto y en menor medida corteza oceánica, con mayor o menor interacción y asimilación de corteza continental inferior.
Yacimientos asociados a este tipo de magmatismo son pórfidos cupríferos, skarns, estratoligados, epitermales, entre otros.


Magmas Alcalinos se dan en zonas de rifting intracontinental, en las zonas de fallas transformacionales y en los trasarcos magmáticos de los margenes continentales.
Se fraccionan en shoshonitas (zonas orogénicas) y sienitas (zonas cratónicas).
Son rocas bajas en respecto a alto. A este tipo de magma se asocian rocas peralcalinas en zonas cratónicas, kimberlitas y lamprófiros (a los cuales se pueden asociar diamantes) y carbonatitas.
Yacimientos asociados a este tipo de magmatismo son apatito – magnetita, Sokli, Finlandia, apatito – titanita, Lozovero, Rusia, magnetita – apatito – actinolita, Kiruna, Suecia, casiterita – wolframita, Jos, Nigeria y diamantes, Sudáfrica, entre otros.


Hidrotermalismo y Formación de yacimientos Fuente de Fluidos Hidrotermales
En la mayoría de depósitos de origen hidrotermal se sabe hoy en día que los fluidos hidrotermales participantes son en su mayoría de origen magmático, y que son los que contienen metales a ser depositados según las condiciones termodinámicas de éste.
La pregunta obvia entonces es en que momento y por qué se separa o fracciona una fase hidrotermal de una fase magmática y como y por qué es capaz de secuestrar metales desde el magma.


Primera Ebullición



A condiciones de alta presión y temperatura, un magma posee una alta solubilidad del agua, solubilidad que decrece con el descenso de temperatura y más fuertemente con el descenso de presión.
Magmas máficos poseen mayor solubilidad que magmas félsicos.
La pérdida de solubilidad de un magma y la consecuente partición de agua desde la fase magmática es denominada "primera ebullición", fenómeno gradual y de poca injerencia.


Segunda Ebullición (Ebullición Retrograda)
Otro proceso de partición de agua más efectivo que la pérdida de solubilidad, es la denominada “segunda ebullición", la cual ocurre durante la cristalización de un magma producto de exsolución de agua.
Se le denomina segunda ebullición porque ocurre durante enfriamiento adiabático.
Este proceso será más rápido y violento a mayor velocidad de cristalización.
La fase hidrotermal particionada comprenderá una fase vapor y una fase de hidro-salmuera salina, con altos contenidos de Na y Cl.
Bajo condiciones normales de cristalización, metales como el Cu, Zn, Pb, Au, Ag, etc. son incorporados a la fase cristalina como trazas en minerales formadores de roca.


Segunda Ebullición y Generación de Fluidos Hidrotermales
Separación masiva y violenta de una fase hidrotermal será capaz de secuestrar metales antes de que entren a formar parte de minerales formadores de roca.
Esto implica que mientras menos cristalizado este un magma antes de que comience cristalización masiva y rápida, mejor probabilidad de extraer altos contenidos de metal existen.
La convergencia de parámetros geológicos, tectónicos y termodinámicos durante el emplazamiento de magmas será de gran relevancia en la optimización de procesos hidrotermales capaces de secuestrar metales desde un magma.






Alteración Hidrotermal

Se entiende como proceso de alteración hidrotermal al intercambio químico ocurrido durante una interacción fluido hidrotermal-roca.
Alteración hidrotermal provoca cambios químicos y mineralógicos en la roca afectada.
En estricto rigor, una alteración hidrotermal puede ser considerado como un proceso de metasomatismo, dandose transformación química y mineralógica de la roca original en un sistema termodinámico abierto.

Las características mineralógicas, químicas y morfológicas de alteración entregan información acerca de las condicio-nes termodinámicas del fluido hidrotermal que las generó.
En la naturaleza se reconocen variados tipos de alteración hidrotermal, caracterizados por asociaciones de minerales específicos.
Los distintos tipos de alteración e intensidad son dependientes de factores tales como composición del fluido hidrotermal, composición de la roca huésped, temperatura, pH, Eh, razón agua/roca y tiempo de interacción, entre otros.



Tipos de Alteración Hidrotermal Alteración Potásica
Caracterizada principalmente por feldespato potásico y/o biotita, con minerales accesorios como cuarzo, magnetita, sericita, clorita.
La alteración potásica de alta temperatura (400° a 800°C) se caracteriza por una alteración selectiva y penetrativa.
Biotita en vetillas ocurre principalmente en el rango 350°-400°C.
Feldespato potásico en vetillas en el rango 300°-350°C.
Biotita y felsdespato están comunmente asociados con cuarzo, magnetita y/o pirita, formados a condiciones de pH neutro a alcalino.






Tipos de Alteración Hidrotermal Alteración Propilítica

Caracterizada principalmente por la asociación clorita-epidota con o sin albita, calcita, pirita, con minerales accesorios como cuarzo-magnetita-illita.
La alteración propilítica ocurre por lo general como halo gradacional y distal de una alteración potásica, gradando desde actinolita-biotita en el contacto de la zona potásica a actinolita-epidota en la zona propilítica.
En zonas más distales se observan asociaciones de epidota-clorita-albita-carbonatos gradando a zonas progresivamente más ricas en clorita y zeolitas hidratadas formadas a bajas condiciones de temperatura.
Se forma a condiciones de pH neutro a alcalino a rangos de temperatura bajo (200°-250°C).





Tipos de Alteración Hidrotermal Alteración Cuarzo-Sericita (Fílica)
Caracterizada principalmente por cuarzo y sericita con minerales accesorios como clorita, illita y pirita.
Ocurre en un rango de pH 5 a 6 a temperaturas sobre los 250°C.
A temperaturas más bajas se da illita (200°-250°C) o illita-smectita (100°-200°C).
A temperaturas sobre los 450°C, corindón aparece en asociación con sericita y andalusita.
En ambientes ricos en Na, paragonita puede aparecer como la mica dominante.





Tipos de Alteración Hidrotermal Alteración Argílica Moderada
Caracterizada principalmente por arcillas (caolín) y mayor o menor cuarzo.
Ocurre en rangos de pH entre 4 y 5 y puede co-existir con la alunita en un rango transicional de pH entre 3 y 4.
La caolinita se forma a temperaturas bajo 300°C, típicamente en el rango <150°-200°C.
Sobre los 300°C la fase estable es pirofilita.


Tipos de Alteración Hidrotermal Alteración Argílica Avanzada

Caracterizada principalmente por cuarzo residual (cuarzo oqueroso o “vuggy sílica”) con o sin presencia de alunita, jarosita, caolín, pirofilita y pirita.
Ocurre dentro de un amplio rango de temperatura pero a condiciones de pH entre 1 y 3.5.
A alta temperatura (sobre 350°C) puede ocurrir con andalusita además de cuarzo.
Bajo pH 2 domina el cuarzo, mientras que alunita ocurre a pH sobre 2.


Tipos de Alteración Hidrotermal Alteración Calco-silicicatada

Caracterizado por silicatos de Ca y Mg dependiendo de la roca huésped, caliza o dolomita.
Caliza : granates andradita y grosularita, wollastonita, epidota, diopsido, idocrasa, clorita, actinolita.
Dolomita : fosterita, serpentinita, talco, tremolita, clorita.
La alteración calco-silicatada ocurre bajo condiciones de pH neutro a alcalino a distintos rangos de temperatura.
La asociación zeolita-clorita-carbonatos es formada a bajas temperaturas y epidota, seguido por actinolita, ocurren a temperaturas progresivamente mayores





Alteración de una Andesita por Infiltración de un Fluido
Una forma de visualizar la interdependencia entre asociaciones de alteración y la composición de fluido hidrotermal en una zona de flujo es obtenida en un experimento donde un volumen de roca de porosidad inicial conocida es sucesivamente llenado con fluido, equilibrado y luego vaciado.
En este caso se emplea una andesita, con porosidad arbitraria inicial de 25%.
El volumen de cada entrada adicional de fluido es ajustada para llenar el espacio progresivo de porosidad.


En el experimento, durante las etapas iniciales, se observa un efecto de neutralización fuerte sobre un fluido de pH inicial 0.8. El pH final después de equilibrio es 5.7
En la medida que las asociaciones de alteración y las reacciones rompen buffers sucesivos, la capacidad de neutralización de la roca baja y la porosidad aumenta, significando razones agua/roca progresivamente mayores



En la etapa final, la roca pierde toda capacidad de neutralización y su porosidad final llega a un 43% con un pH de salida idéntico al de entrada (0.8).
La composición inicial del fluido es cambiada como resultado de la interacción agua roca, y la capacidad de transporte de metales está directamente ligada a condiciones de pH y redox durante la evolución de la alteración.

Este experimento ejemplariza el efecto fundamental de la interacción agua-roca sobre la composición de un fluido hidrotermal en el trayecto desde su fuente hasta su lugar de precipitación.
La concentración de metales en fluidos generadores de mena están controlados por (1) la concentración de metales y complejos ligantes en el fluido original y (2) la solubilidad de minerales de alteración que limitan el transporte de metales.
Esta solubilidad determina (3) la cantidad de metales que pueden ser lixiviados de la roca en el camino del fluido antes de que la solubilidad de metales sea limitada por la precipitación de fases de alteración conteniendo los metales, y (4) la concentración de metales que pueden ser transportados en equilibrio con los minerales que limitan transporte.
Los principales controles sobre los efectos (3) y (4) son estado Redox y pH de la solución.







Modelos de Depositos
Un modelo consiste en el intento de describir y explicar el comportamiento de un proceso (natural) en terminos de parámetros medibles en su estado final.
En el caso de geología lo que se observa y estudia es el resultado final.
Por lo tanto un modelo puede ser visto como una función f (xn), donde xi…xn representan parámetros como temperatura, presión, litología, fuente de agua, permeabilidad, Eh, pH, fO2, fS2, ambiente tectónico, etc.
Siendo la cantidad de parámetros involucrados extremadamente grande y de compleja medición, muchas veces producto de interpretaciones subjetivas, el desarrollo de un modelo geológico de deposito es sujeto a una enorme gama de incertidumbres, sin mencionar la variablidad de los sistemas naturales que hacen de cada caso estudiado un caso particular.


Definiciones
Metalogénesis
Provincia Metalogénica
Período Metalogénico


Sistemas del tipo Pórfido Cuprífero Generalidades

Los depositos del tipo pórfido cuprífero comprenden yacimientos de gran volumen de mineralización primaria de sulfuros de cobre-fierro y fierro, en general hospedados y directamente asociados a cuerpos intrusivos porfíricos, pero en ningún caso estrictamente restringidos a roca intrusiva.
Estos yacimientos están asociados a arcos magmáticos de margenes continentales y a magmatismo calcoalcalino de composición intermedia.
La roca huesped es típicamente granodiorita, cuarzo-monzonita y pórfido andesítico, asociado a sistemas intrusivos multifaséticos y comunmente relacionado con etapas tardías de la evolución magmática.


Generalidades

La mineralización ocurre en forma diseminada, en vetillas y enjambres de vetillas (stockwork), en columnas de brecha y también como rellenos.
Los cuerpos de pórfido cuprífero tienden a ser grandes (cientos a miles de metros de diametro), de forma concentrica a elongada, con contornos regulares a irregulares en planta.
En secciones verticales estos yacimientos tienen forma tubular o de embudo (muela), con ejes casi verticales.
Normalmente se observa mayor diseminación horizontal que vertical, hasta 6 Km2.





Mineralización y Alteración
La mineralogía primaria de los pórfidos cupríferos consiste principalmente en pirita y calcopirita (aprox. 90% de los sulfuros), con menor bornita, enargita, tetrahederita y trazas de molidebnita y esfalerita.
La mineralogía supérgena consiste principalmente en calcosina y covelina (enriquecimiento) y en minerales oxidados de cobre como malaquita, crisocola, atacamita, copper Wad y copper Pitch entre otros (zona oxidada).
La alteración hidrotermal es normalmente zonada, pero de acuerdo a los discutido previamente en estos apuntes, los tipos de alteración son también dependientes del tipo de roca huesped. Siendo esto el caso, la zonación ideal muchas veces no ocurre.
En el caso del modelo ideal, existe un núcleo de alteración potásica, sobrepuesto un halo de alteración fílica con bordes laterales de alteración argílica y un halo externo de alteración propilítica.


Alteración Supérgena y Enriquecimiento Secundario

En el caso de sistemas de pórfido cuprífero expuestos a procesos de alteración supérgena en ambientes áridos ocurren procesos de enriquecimiento secundario, superpuestos a la mineralización y alteración primaria (T).
El perfil de alteración/ mineralización descendente desde superficie corresponde a una zona lixiviada, con abundantes óxidos e hidróxidos de fierro, arcillas y cuarzo, con valores de Cu normalmente por debajo del 0.1-0.2%. Esta zona alcanza profundidades de 20 a 25 m, en algunos casos hasta 400 m.
Le sigue en profundidad una zona oxidada con óxidos e hidróxidos de fierro y mineralización oxidada de cobre (crisocola, malaquita, atacamita, antlerita, brochantita, etc.), con leyes que pueden superar el 1%. Esta zona ocurre normalmente entre los 25 a 50 m, bastante variable en todo caso.
La zona más profunda corresponde a la de enriquecimiento secundario, con mineralización principalmente de calcosina y covelina, con leyes entre 1 y 2% Cu. Esta zona ocurre normalmente bajo los 50 metros, alcanzando espesores en algunos casos de hasta 200 m.







Procesos de Formación

Los sistemas del tipo pórfido cuprífero son sin ninguna duda de origen netamente magmático – hidrotermal, asociados al emplazamiento multifase de rocas intrusivas de composición intermedia.
En muchos casos puede existir un control estructural tanto del emplazamiento de rocas igneas como de la circulación de fluidos hidrotermales y mineralización.
Teniendo en cuenta esta relación directa entre magmatismo y la generación de yacimientos del tipo pórfido cuprífero, es conveniente entender los procesos genéticos desde el momento en que se particiona la fase hidrotermal desde un magma en cristalización en adelante.





Separación de la fase Hidrotermal
El proceso de segunda ebullición ocurre invariablemente en algún momento de la evolución de un sistema multifase intrusivo, pudiendo ser de mayor o menor intensidad, volumen y velocidad.
En el caso de magmas silicatados la incorporación de metales a los minerales formadores de roca ocurre a nivel de retículo cristalino o como cristalización de sulfuros en forma de microinclusiones en los minerales formadores de roca.
Bajo condiciones normales, una roca andesítica calcoalcalina tendrá valores de contenido de cobre entre 20 y 100 ppm.
La cristalización de sulfuros por otra parte es dependiente del contenido de SiO2 del magma, directamente proporcional a mayores concentraciones de SiO2.
De esta forma un magma félsico no tiene mayores posibilidades de generar mineralización metálica.

El secuestro de metales desde un magma por parte de la separación de una fase hidrotermal debe ocurrir antes de la cristalización de sulfuros, indicando la necesidad de magmas más máficos como fuente de metales.
La separación de la fase hidrotermal durante segunda ebullición será la encargada de secuestrar metales desde el magma previo a su incorporación a los minerales formadores de roca.
La fase hidrotermal consiste fundamentalmente en una hidrosalmuera y una fase vapor, particionandose metales a la hidrosalmuera principalmente en forma de complejos clorurados y a la fase vapor.
A la fecha no existen datos que indiquen la profundidad dentro del sistema magmático interconectado de la zona donde ocurre la segunda ebullición y separación masiva de la fase hidrotermal, pero diversos modelos coinciden en profundidades del orden de 5 a 6 Km.



Ascenso y acumulación de fluidos hidrotermales
Separada la fase hidrotermal está ascendería por medio del mismo sistema magmático hasta profundidades del orden de 2 a 2.5 Km.
Tanto el ascenso como la acumulación/ dispersión de fluidos hidrotermales estará controlado por condiciones de permeabillidad tanto primaria como secundaria.
Cabe destacar que en etapas tempranas de intrusión subvolcánica el contraste de temperatura entre intrusión y roca huesped es grande, comportandose la roca huesped inicialmente en forma frágil.
En la medida que la roca huesped es afectada por sucesivas intrusiones la temperatura asciende, provocando una anomalía isotérmica y desplazandose de esta forma las isotermas hacia superficie.
El límite de la isoterma 400° C marca en buena medida la zona de transición entre roca frágil y roca ductil.
De esta forma, la transición frágil/ductil queda cercana a superficie. Esta transición constituye también una barrera inpermeable, capaz de contener y acumular fluidos hidrotermales, ubicandose normalmente en la zona apical del sistema intrusivo relacionado.



Comportamiento reológico de roca huesped y acumulación de fluidos hidrotermales
Acumulación de presión y brechización
Sellamiento y repetición de eventos
Celdas convectivas de fluidos meteóricos
Rápido enfriamiento del sistema
Enfriamiento de zona de transición
Cambios en comportamiento de roca
Fracturamiento, vetillas y vetas
Aumento de razón agua roca
Sistema se retroalimenta
Evolución de sistema pórfido en función de procesos integrados (comportamiento reológico, fracturamiento, permeabilidad, alteración, permeabilidad, etc.)






Evolución de Alteración Hidrotermal
Etapas sucesivas de alteración a temperaturas progresivamente menores (alteración prograda y retrograda).
Mineralización metálica (desde 400° a 300° C).
Evolución reológica asociada a enfriamiento.
Evolución de fracturamiento.
Evolución de permeabilidad.
Evolución de razón agua roca.
Integración de todos estos parámetros en función de evolución dinámica acoplada.



Variaciones al Modelo
Las variaciones y complicaciones a este modelo por cierto son muchas. El hecho de que estos sistemas están asociados a procesos magmáticos multifacéticos, implica que pueden repetirse varios eventos, uno sobre otro durante toda la vida magm&aacu